Missing-in-metastasis B (MIM-B) combined with caveolin-1 promotes metastasis of hepatocellular carcinoma

نویسندگان

  • Xiu-Yan Huang
  • Zi-Li Huang
  • Tao Niu
  • Zhen-Qian Wu
  • Bin Xu
  • Yong-Hua Xu
  • Xin-Yu Huang
  • Qi Zheng
  • Jian Zhou
  • Zi Chen
  • Zhao-You Tang
چکیده

Background Increasing amounts of evidence indicate that Missing in metastasis B (MIM-B) promotes cancer metastasis. Here, we sought to better understand the mechanism through which MIM-B promotes tumor metastasis in hepatocellular carcinoma (HCC). Methods We performed confocal microscopy analysis to determine the distributions of MIM-B and caveolin-1 and conducted co-immunoprecipitation assays to detect the interactions between MIM-B and caveolin-1 in vitro. We performed transwell assays to analyze the invasive ability of HCC cells. Changes in the expression levels of key genes and some molecular makers were detected by immunohistochemistry and western blotting in HCC tissue samples. Results We found that MIM-B co-localizes with caveolin-1 and demonstrated that MIM-B and caveolin-1 interact in vitro. Repressing MIM-B and caveolin-1 expression inhibited the epidermal growth factor receptor signaling pathway. We overexpressed MIM-B and caveolin-1 in Hep3B cells, which enhanced Hep3B cell invasiveness. Furthermore, MHCC97H cell invasiveness was significantly decreased in cells in which MIM-B and caveolin-1 expression was inhibited. Additionally, we found that MIM-B and caveolin-1 were expressed at higher levels in HCC tissues than in paired normal tissues. Moreover, HCC patients with MIM-B and caveolin-1 up-regulation experienced significantly worse outcomes than controls (P < 0.001), and HCC patients with high MIM-B and caveolin-1 expression levels often developed pulmonary metastasis (P < 0.001). Conclusions MIM-B combined with caveolin-1 promotes metastasis of HCC, and elevated MIM-B and caveolin-1 expression levels are associated with a poor prognosis in HCC patients; therefore, MIM-B and caveolin-1 may represent novel targets for the diagnosis and treatment of HCC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MIM-B, a putative metastasis suppressor protein, binds to actin and to protein tyrosine phosphatase delta.

We have found that MIM-B, a putative metastasis suppressor protein, is implicated in actin cytoskeletal control and interaction with a protein tyrosine phosphatase (PTP). MIM was originally described as a protein whose mRNA was Missing in Metastasis, as it was found not to be present in metastatic bladder carcinoma cell lines [Lee, Y. G., Macoska, J. A., Korenchuk, S. and Pienta, K. J. (2002) N...

متن کامل

Prognostic molecular markers in hepatocellular carcinoma (Review article

Hepatocellular carcinoma (HCC) is the 5th commonest malignancy worldwide and is the third most common cause of cancer-related death. The prevalence is different in the world. The ability to predict patients at higher risk of recurrence and with a poor prognosis would help to guide surgical and chemotherapeutic treatment according to individual risk. As understanding of hepatocarcinogenesi...

متن کامل

ACUTE APPENDICITIS DUE TO METASTASIS OF PROSTATIC CARCINOMA

A 70 year old male presented with right lower quadrant pain and anorexia for about 72 hours prior to hospital admission. He underwent laparotomy with impression of acute appendicitis. The operative finding was an inflamed tumoral appendix without appendicular base involvement, and appendectomy was done. The patient had an uneventful post-op course. Due to the pathology report of prostatic ...

متن کامل

Involvement of Rac in actin cytoskeleton rearrangements induced by MIM-B.

Numerous scaffold proteins coordinate signals from the environment with actin-based protrusions during shape change and migration. Many scaffolds integrate signals from Rho-family GTPases to effect the assembly of specific actin structures. Here we investigate the mechanism of action MIM-B (missing in metastasis-B) on the actin cytoskeleton. MIM-B binds actin monomer through a WASP homology 2 m...

متن کامل

Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo

Cancer cells are subjected to fluid shear stress during passage through the venous and lymphatic system. Caveolin-1 (Cav-1), a principal structural component of caveolar membrane domains, contributes to cancer development but its mechanobiological roles under low shear stress (LSS) conditions remain largely unknown. Here, we identified Cav-1 is mechanosensitive to LSS exposure, and its activati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017